
Using First-Order Logic to Reason about Submodule
Construction1

Gregor v. Bochmann

School of Information Technology and Engineering (SITE), University of Ottawa, Canada
bochmann@site.uottawa.ca

A shorter version of this paper was included in the proceedings of the IFIP
international conference on Formal Techniques for Distributed Systems

(FMOODS/FORTE), 2009

Abstract. We consider the following problem: For a system consisting of two
components, the behavior of one component is known as well as the desired
global behavior. What should be the behavior of the second component such
that the behavior of the composition of the two conforms to the desired
behavior ? - This problem has been called "submodule construction" or
"equation solving"; and in the context of supervisory control, it is the problem
of designing a suitable controller (second component) which controls a given
system to be controlled (first component). Solutions to this problem have been
described in the context of various specification formalisms and various
conformance relations. This paper presents a new formulation of this problem
and its solution in first-order logic. It is also shown how the solutions for
submodule construction in various specification formalisms can be derived
from the solution in logic. The simple proof of correctness for the logic solution
is then used to justify the particular forms of solutions in the different
specification formalisms, such as (a) synchronous rendezvous at several
interfaces, and (b) interleaved rendezvous (labeled transition systems).

1. Introduction

In automata theory, the notion of constructing a product machine S from two given
finite state machines MA and MB , written M = MA x MB, is a well-known concept (see
Figure 1(a)). This notion is very important in practice since complex systems are
usually constructed as a composition of smaller subsystems, and the behavior of the
overall system is in many cases equal to the composition obtained by calculating the
product of the behaviors of the two subsystems. Here we consider the inverse
operation, called “equation solving” or “submodule construction”: Given the
composed system M and one of the components MA, what should be the behavior of
the second component MB such that the composition of these two components MA and
MB will exhibit a behavior equal to M. That is, we are looking for the value of X

1 This work was partly supported by a research grant from the Natural Sciences and

Engineering Research Council of Canada.

2 Gregor v. Bochmann

which is the solution to the equation MA x X = M (see Figure 1(b)). This problem is
an analogy of integer division, which provides the solution to the equation N1 * X =
N for integer values N1 and N. In integer arithmetic, there is in general no exact
solution to this equation; therefore integer division provides the largest integer which
multiplied with N1 is smaller than N. Similarly, in the case of equation solving for
machine composition, we are looking for the most general machine X which
composed with MA satisfies some conformance relation in respect to M. In the
simplest case, this conformance relation is trace inclusion.

Fig. 1. (a) two communicating components; (b) submodule construction problem

A first paper of 1980 [1] (see also [2]) gives a solution to this problem for the
case where the machine behavior is described in terms of labeled transition systems
(LTS) which communicate with one another by interleaved rendezvous interactions
(see also [3] for a more formal treatment). This work was later extended to the cases
where the behavior of the machines is described in CSP [4] (with behavioral
equivalence as conformance relation) [5], by finite state machines (FSM)
communicating through message queues [6], by input/output automata (IOA) [7, 8, 9]
([7] considers bisimulation as conformance relation), and by synchronous finite state
machines [10, 11]. The case of extended state machine models including state
variables and assertions about input and output parameters has also been studied [12].
The problem has also been formulated for databases using relational algebra [13].

One application of this submodule construction method was considered in the
context of the design of communication protocols, where the components MA and MB
may represent two protocol entities that communicate with one another [2]. Later it
was recognized that this method could also be useful for the design of protocol
converters in communication gateways [15, 16], and for the selection of test cases for
testing a module in a context [17].

Independently, the same problem was identified in control theory for discrete
event systems [18] as the problem of finding a controller for a given system to be
controlled. In this context, the specification MA of the system to be controlled is
given, as well as the specification of certain properties that the overall system,
including the controller, should satisfy. If these properties are described by M, and the
behavior of the controller is X, then we are looking for the behavior of X such that the
equation MA x X = M is satisfied. Solutions to this problem are described in [19]
using a specification formalism of labeled transition systems where a distinction of
input and output is made (interactions of the system to be controlled may be
controllable (which corresponds to output generated by the controller) or
uncontrollable (which corresponds to input to the controller). This specification
formalism seems to be equivalent to input/output automata (IOA) [20].

In some private discussions, Nina Yevtushenko pointed out that the formulas that
describe the solutions of the equations for synchronous and interleaving automata, as
described in [11] and [1], respectively, have a quite similar structure. Later, when

Using First-Order Logic to Reason about Submodule Construction 3

listening to a talk on stochastic relational databases by Cory Butz, I noticed that the
same kind of equation solving problem can be formulated in the context of relational
databases, and that the solution has again a quite similar structure. I have argued [13,
9] that the problem of equation solving in relational databases is a generalization of
the problem for synchronous and interleaving automata, and that also a solution for
IOA can be derived from this more general problem. During the discussion after the
presentation of my paper [9] at the FORTE conference, the question was raised
whether this equation solving problem could also be formulated within the context of
first-order logic.

The purpose of this paper is to show that, in fact, the equation solving (or
submodule construction) problem can be formulated in logic. It turns out that (a) a
solution with a structure similar to the solutions mentioned above exists, and (b) a
proof of the correctness of this solution is quite simple, apparently much simpler than
the existing proofs of correctness for the solutions in the contexts mentioned above.
We show in this paper how the solutions for submodule construction in different
contexts can be derived from the general solution in the logic context. The proof of
correctness from the logic context can therefore be used to justify the particular forms
of solutions in the contexts of different specification formalisms. We consider in this
paper the context of communicating system components using (a) synchronous
rendezvous at several interfaces, or (b) interleaved rendezvous (that is, labeled
transition systems). Other contexts are considered in [32], such as synchronous (I/O)
automata with complete or partial behavior specifications, interleaving IOA with
complete or partial behavior specifications, and finite state machines with queued
communication, as well as relational algebra for databases. These contexts include
much of the previous work mentioned above and also some not so common modeling
approaches.

The paper is structured as follows: The next section presents the problem of
equation solving in the general context of first-order logic. The main concepts and
equations are established which are then referenced in the subsequent sections. In
Section 3, the submodule construction problem is introduced in the context of
modular system design where the overall system is composed out of several
components and the behavior of one of the components is to be found. A modeling
framework for synchronous communication between all the components is
introduced. Section 4 shows how this modeling framework can be used to model
interleaving semantics, as used by labeled transition systems (LTS). Section 5
presents the conclusions.

2. Equation solving in the logic context

2.1. The logic context

We use in this section first-order logic with typed variables. We consider a universe
with three variables XA, XB, and XC that may take values from three domains DA , DB
and DC , respectively. These domains may be infinite. Therefore, the set of possible

4 Gregor v. Bochmann

value assignments to the variables is U = DA × DB × DC . We write xA, xB, and xC for
possible values of the variables XA, XB, and XC , respectively.

We are interested in relationships between values of different variables. For
instance, we may consider a relation R ⊂ DA × DB which is a subset of pairs < xA, xB
> of values of the variables XA and XB . We also use predicates to characterize sets.
For instance, the relation R may be characterized by a predicate C(xA, xB) which is
true exactly for those pairs < xA, xB > that are in R.

2.2. The equation solving problem

In the following, we are interested in three relations RA ⊂ DB × DC, RB ⊂ DA × DC and
RC ⊂ DA × DB . We write CA(xB, xC) , CB(xA, xC) , and CC(xA, xB) for their respective
characterizing predicates. We consider the following proposition which relates these
three relations:

∀ < xA, xB, xC >∈U : <xB, xC> ∈ RA ∧ <xA, xC> ∈ RB ⇒ <xA, xB> ∈ RC (1Rel)

This proposition may be equivalently rewritten in terms of the predicates as follows:

∀ < xA, xB, xC > ∈ U : CA(xB, xC) ∧ CB(xA, xC) ⇒ CC(xA, xB) (1Pred)

The problem of equation solving is the following: We assume that RA and RC are
given. What are the properties of relation RB that ensure that proposition (1) is
satisfied? – We would like to find a maximal solution RB

max to this problem, that is,
RB

max together with RA and RC would satisfy (1), but any larger RB’ ⊃ RB
max would

not satisfy this proposition.

2.3. The maximal solution

Starting from (1Pred), it is easy to see that the following predicate characterizes the
maximal solution:

CB
max(xA, xC) = ∀ xB ∈ DB : CA(xB, xC) ⇒ CC(xA, xB) (2)

The right side of this definition can be equivalently transformed in several steps as
follows:
 ∀ xB ∈ DB : ¬CA(xB, xC) ∨ CC(xA, xB)
 ∀ xB ∈ DB : ¬ (CA(xB, xC) ∧ ¬CC(xA, xB))
 ¬∃ xB ∈ DB : CA(xB, xC) ∧ ¬CC(xA, xB)
which leads to the following equivalent expression for the maximal solution:

CB
max (xA, xC) = ¬∃ xB ∈ DB : CA(xB, xC) ∧ ¬CC(xA, xB) (3)

Using First-Order Logic to Reason about Submodule Construction 5

2.4. The realized subset of RC

We note that in general not all pairs <xA, xB> ∈ RC could be “realized” by RA and
RB

max .

Definition: We say that a pair <xA, xB> ∈ RC is realizable by RA and RB if there exist
a value xC ∈ DC such that <xB, xC> ∈ RA and <xA, xC> ∈ RB .

We call the subset of RC that is realisable by RA and RB
max the maximally realisable

subset of RC (or “product”), written RC
prod . We therefore have

<xA, xB> ∈ RC
prod iff ∃ xC ∈ DC : <xB, xC> ∈ RA ∧ <xA, xC> ∈ RB

max (4)

2.5. The reduced maximal solution

We consider the relation RB
incompatible characterized by the following predicate:

 CB
incompatible(xA, xC) = ¬∃ xB ∈ DB : CA(xB, xC) ∧ CC(xA, xB)

Lemma: There is no <xA, xB> ∈ RC that is realizable by RA and RB
incompatible .

Proof: Let us assume that there is a pair <xA, xB> ∈ RC that is realizable by RA and
RB

incompatible . According to the definition of “realizable”, this implies that there is a xC
∈ DC such that <xB, xC> ∈ RA and <xA, xC> ∈ RB

incompatible . Now, the definition of
RB

incompatible implies that there is no x’B ∈ DB such that CA(x’B, xC) ∧ CC(xA, x’B).
However, this is a contradiction, since xB satisfies this condition for x’B.

We conclude from the lemma above that those pairs <xA, xC> of RB
max that are in

RB
incompatible do not contribute to the realization of RC

prod . We therefore may eliminate
from the solution RB

max all pairs in RB
incompatible and still obtain the same set RC

prod of
realizable pairs <xA, xB>. We call this the reduced maximal solution to the equation
solving problem. It is characterized by the following predicate:
 CB

red (xA, xC) = (∃ xB ∈ DB : CA(xB, xC) ∧ CC(xA, xB)) ∧
 (¬∃ xB ∈ DB : CA(xB, xC) ∧ ¬CC(xA, xB)) (5)

2.6. Example

DA = {a1, a2}; DB = {b1, b2, b3}; DC = {c1, c2, c3, c4};
RA = {<b1, c1 >, <b2, c2 >, <b1, c3 >, <b2, c3 >, <b3, c3 >};
RC = {<a1, b1 >, <a2, b2 >, <a1, b3 >};
The relation corresponding to the predicate ¬CC(xA, xB) is the complement of RC in
respect to the set of all tuplets in DA × DB , written ¬RC . The set of all tuplets in DA ×
DB is also sometimes called the “chaos“ over DA × DB , written ChaosA×B . We have
ChaosA×B = {<a1, b1 >, <a2, b2 >, <a1, b3 >, <a1, b2 >, <a2, b1 >, <a2, b3 >}, where the
last three tuplets are in ¬RC .

Using Formula (3), we obtain
 RB

max
 = ChaosA×C \ {<a1, c2 >, <a2, c1 >, <a1, c3 >, <a2, c3 >}

 = {<a1, c1 >, <a2, c2 >, <a1, c4 >, <a2, c4 >}

6 Gregor v. Bochmann

where “\” is the set subtraction operator.

We have RC
prod = {<a1, b1 >, <a2, b2 >} which is a subset of RC .

We note that the tuplets <a1, c3 > and <a2, c3 > are in RB
incompatible , and the reduced

maximal solution is RB
red

 = {<a1, c1 >, <a2, c2 >} .

3. Submodule construction for synchronous systems

3.1. Modeling systems consisting of several components

State machines are often used as models for reactive systems that interact with their
environment. Often one considers a system model which is the composition of several
state machines. Therefore a state machine is normally a component within a system, it
interacts with other components of the system and possibly also with the environment
of the system; or the state machine represents the interactions of the whole system
with its environment.

A system component has one or more interfaces. An interface is a location where
interactions with the environment of the component take place. Each interface i is
associated with a domain Ii ; the elements of Ii are the possible interactions that may
take place at that interface during a given time unit. We write xi

(t) for the interaction
that takes place at interface i at time unit t. Clearly, xi

(t) ∈ Ii for all t. We write xi for a
sequence of interactions at interface i over a certain time period. We write Ii* for the
set of all sequences that can be formed by concatenating interactions from the domain
Ii . We have xi ∈ Ii* .

We assume trace semantics for specification of the dynamic behaviour of a
system, that is, the dynamic behavior of a system M is defined in terms of the set of
possible execution histories that could occur during the execution of the component.
For a system with n interfaces i (i = 1, …, n), an execution history consists of a tuplet
< x1, x2, … xn > where xi (i = 1, …, n) is the sequence of interactions that occurred at
interface i during the execution history. We therefore assume that the specification S
of the dynamic behavior of M is given in the form of a (normally infinite) set of such
tuplets. As in Section 2, instead of talking about the set S of tuplets, one may also talk
about the predicate C that characterizes this set.

Let us assume that the system consists of a certain number of components (sub-
systems) Cj (j = 1, …m), each connected to a certain number of interfaces. For
instance C1 may be connected to interfaces i = 1, 3 and 6; and its behaviour predicate,
therefore, will be of the form C1(x1, x3, x6). Let us assume that the system has
performed synchronous interactions over t time units and the execution history eh = <
x1, x2, … xn > has been observed. Since all components were involved in this
execution, the behaviour predicates of all components must be true for the interface
interaction sequences xi in eh.

We now ask the question: What could be the interactions xi
(t+1) at the interfaces

(i = 1, …, n) during the next time unit (t+1). These interactions must satisfy the
condition that the extended interaction sequences including that time unit, xi’ = xi
concatenated-with xi

(t+1) , should also satisfy the behaviour predicates of all the

Using First-Order Logic to Reason about Submodule Construction 7

components. This means that all components must be ready to engage in the
interactions xi

(t+1) at those interfaces to which they are connected. In other words,
there is a kind of global rendezvous between all the components to agree on a set of
interactions xi

(t+1) at the interfaces that are agreeable to all component. This also
means that any resulting execution history will satisfy all component behaviour
predicates; in other words, the behaviour predicate of a composition of several
components is the conjunction of the behaviour predicates of all participating
components.

We note that the definition of this kind of synchronous rendezvous occurring
simultaneously at several interfaces is a concept that would be difficult to be
implemented in a distributed context. It is not clear whether this is a concept of
practical importance, however, we think that it exhibits a theoretical simplicity that
makes it interesting. Other more practical communication paradigms are discussed in
the subsequent sections.

Besides composition, there is another important operation for describing the
behaviour of a system consisting of several components. This is the hiding of an
interface that is not visible from a certain perspective. Let us consider a system
configuration consisting of several components and n interfaces i (i = 1, …, n). We
assume that the dynamic behaviour of the system is characterized by the predicate
C(x1, x2, … xn). When one of the interfaces (say i) is hidden, we obtain a visible
behaviour which only involves the non-hidden interfaces. We use the notation
“hide(syn)

i (C(x1, x2, … xn)” to represent the predicate of this behaviour. As discussed in
[23], this predicate has the following form:
 < x1, … , xi-1, xi+1, …, xn > ∈ hide(syn)

i (C(x1, x2, … xn))
 iff ∃ xi ∈ Ii* : < x1, … , xi-1, xi, xi+1, …, xn > ∈ C(x1, x2, … xn)

3.2. Submodule construction

We now consider a system configuration containing two components MA and MB as
shown in Figure 2(a). Since the sequences at the three interfaces are constrained by
the behaviour of the two components, we have the following predicate that
characterizes the set of all possible execution histories of this system:

∀ < xA, xB, xC > ∈ U : CA(xB, xC) ∧ CB(xA, xC)

where U = IA* × IB* × IC* is the universal set of execution sequences for a system
architecture as shown in Figure 2(a).

Fig. 2. Two components MA and MB; (b) also showing the desired overall behavior MC

Let us now assume that the system consisting of the composition of the two
components MA and MB is supposed to behave like a system MC characterized by the

8 Gregor v. Bochmann

predicate CC(xA, xB), as shown in Figure 2(b). Then we have the following
requirement:

 ∀ < xA, xB, xC > ∈ U : CA(xB, xC) ∧ CB(xA, xC) = CC(xA, xB)

If we suppose that the behavior defined by CC(xA, xB) represents a safety requirement,
that is, all execution histories generated by the two components MA and MB must
satisfy CC(xA, xB), then we have the requirement:

 ∀ < xA, xB, xC > ∈ U : CA(xB, xC) ∧ CB(xA, xC) ⇒ CC(xA, xB) (1syn)

This formula is identical to Equation (1Pred) if we assume that the domains Di of
Section 2 are sets of interaction sequences, namely Di = Ii* (for i = A, B and C).

The equation solving problem introduced in Section 2 becomes, in the context of
interacting state machines, the following “submodule construction problem”. We
assume a system structure as shown in Figure 2(b). If the specification of MA is given
in the form of CA(xB, xC), as well as the safety requirement CC(xA, xB) for the overall
system, what is the most relaxed requirement for the dynamic behaviour of machine
MB ?

Since the proposition (1syn) is identical to (1Pred), we can use Formula (3) to obtain
the most general behaviour of MB that satisfies (1syn). Using the hiding operator
discussed in Section 3.1, we may rewrite Formula (3) as follows:

 CB
max (xA, xC) = ¬ hide(syn)

B (CA(xB, xC) ∧ ¬CC(xA, xB))

We note that the negation can also be expressed by the complement in respect to the
corresponding chaos behaviour, as in the Formula (3RelAlg) of Section 2.7. This leads
to the following:

CB
max (xA, xC) = IA* × IC* \ hide(syn)

B ((CA(xB, xC) ∧ (IA* × IB* \ CC(xA, xB))) (3syn)

It is important to note that the operators used in Formula (3syn) can be evaluated
algorithmically if the infinite sets of sequences defined by CA(xB, xC) and CC(xA, xB)
are regular sets, that is, are defined by a state machine with a finite number of states.
The number of states of the machine representing the composition of two machines is
smaller or equal to the product of the number of states of the two machines. The
complement is straightforward to calculate in the case of deterministic state machines
and can be realized by complementing the accepting and non-accepting states.
Unfortunately, the hiding operator introduces in general non-determinism and the
resulting non-deterministic behaviour description must be transformed into a
deterministic description which is a problem of exponential complexity (see for
instance [24]). We conclude that the complexity of the sub-module construction
problem for regular state machines is in general exponential.

The considerations concerning the realizability of all the sequences defined by
CC(xA, xB) and the reduced maximal solution CB

red are identical to what was discussed
in Section 2. We note that one would normally be interested in the reduced maximal
solution for the component MB which is given by the following formula:
 CB

red (xA, xC) = hide(syn)
B (CA(xB, xC) ∧ CC(xA, xB))

 \ hide(syn)
B ((CA(xB, xC) ∧ (IA* × IB* \ CC(xA, xB))) (5syn)

Using First-Order Logic to Reason about Submodule Construction 9

3.3. Examples

We present here two examples which are very similar to the example of Section 2.6.
If we take the variable values ai, bj, and ck of Section 2.6 as the possible interactions at
the interfaces IA, IB and IC, respectively, and impose no constraints on the order in
which these interactions may take place, we obtain state diagrams for MA and MC
with a single state having a transition for each tuplet in the respective relation RA or
RC defined in Section 2.6. For example, for MC we obtain the state diagram of Figure
3(a), and similarly for MA . This example is isomorph to the example of Section 2.6
and yields as reduced maximal solution a machine that allows the synchronous
transitions <a1, c1 > and <a2, c2 > in an arbitrary order.

To make this example a bit more interesting, we consider now that the behaviour
of MC is given by the state diagram of Figure 3(b) which means that synchronous
interaction tuplets <a1, b1 > and <a2, b2 > must alternate and one or more <a1, b3> may
be inserted after a <a1, b1 > . In this case we obtain the reduced maximal solution
shown in Figure 3(c).

Fig. 3. (a) behavior of a synchronous machine MC corresponding to the example of Section 2.6;
(b) modified behavior of machine MC; (c) reduced maximal solution for the modified behavior
of MC

4. Submodule construction for labeled transition systems

4.1. Modeling interleaving semantics

In this modeling framework, we also have rendezvous interactions at interfaces, but
interleaving semantics is assumed, which means that at most one interaction (on a
single interface) may occur during each time unit. We use in the following the same
modelling framework used for synchronous machines, but introduce the following
changes:
− We allow an interface to have the value null during a given time unit, which means

that no interaction takes place at this interface during this time unit.
− In a system of several components with n interfaces, a possible execution history <

x1, x2, … xn > must satisfy the following constraint, called interleaving constraint:
 IC(x1, x2, … xn) = for all t : xi

(t) ∈ Ii implies xj
(t) = null for all j ≠ i.

Any execution history h = < x1, x2, … xn > that satisfies the interleaving
constraint defines a linear (time) order for the (non-null) interactions at the interfaces.
We write seq(h) for this sequence and call it the execution sequence corresponding to

10 Gregor v. Bochmann

h. For execution sequences over n interfaces, as above, we have seq(h) ∈ (Ι1 ∪ Ι2
…∪ Ιn)* . Normally, the semantics of labelled transition systems is described in
terms of these (finite and infinite) execution sequences and the possibilities of
blocking after finite sequences. We will continue using the model of separate
interaction sequences xi at the different interfaces, as introduced for synchronous
communication; we thus obtain a uniform framework for treating systems with both
types of communication, synchronous and interleaving.

Definition (Equivalence of execution histories): Since only the execution sequences
count for the semantics of labelled transition systems, we say that two execution
sequences h1 and h2 are equivalent, written h1 ≅ h2 , if they define the same execution
sequence, that is, seq(h1) = seq(h2).

This corresponds to the so-called stuttering equivalence between execution
sequences that contain at certain time units null-interactions at all interfaces. Clearly,
we assume that any predicate defining the behaviour of a given system component has
the same value for equivalent execution histories; the value should only depend on the
corresponding execution sequence.

The notion of equivalence between execution histories leads to a slightly
modified definition of the hiding operator as follows:
 < x1, …, xi-1, xi+1, …, xn > ∈ hide(LTS)

i (C(x1, x2, … xn))
 iff IC(x1, … , xi-1, xi+1, …, xn)
 ∧ ∃ < x1‘, … , xi-1‘, xi‘, xi+1‘, …, xn‘ > : (IC(x1‘, … , xi-1‘, xi‘, xi+1‘, …, xn‘)
 ∧ < x1‘, … , xi-1‘, xi+1‘, …, xn‘ > ≅ < x1, … , xi-1, xi+1, …, xn >
 ∧ < x1‘, … , xi-1‘, xi‘, xi+1‘, …, xn‘ > ∈ C(x1, x2, … xn))

4.2. Submodule construction

Due to the interleaving constraints and the equivalence between execution histories,
we have the following modified equations. Equation (1syn) becomes:
 ∀ < xA, xB, xC > ∈ U : IC(xA, xB, xC) ∧ CA(xB, xC) ∧ CB(xA, xC) ⇒ CC(xA, xB) (1LTS)

Equation (2) becomes:
 CB

max(xA, xC) = IC(xA, xC) ∧ ∀ < xA‘, xB‘, xC‘ > ∈ U :
 IC(xA‘, xB‘, xC‘) ∧ <xA‘, xC‘> ≅ <xA, xC> ∧ CA(xB‘, xC‘) ⇒ CC(xA‘, xB‘) (2LTS)

This definition of CB
max says that an execution history at the interfaces IA and IC is an

allowed behavior for component MB if for all global execution histories < xA‘, xB‘, xC‘
> that have an equivalent behavior for MB, the satisfaction of CA leads to the
satisfaction of CA . This modification to Equation (2) is introduced because the
specification of the behavior for MB can only restrain the possible execution
sequences of the component, but has no impact on which of the equivalent execution
histories would be realized in collaboration with the other system components and the
environment.

Using a similar demonstration as for Equation (3) in Section 2, it is easy to see
that Equation (2LTS) is equivalent to

Using First-Order Logic to Reason about Submodule Construction 11

 CB
max(xA, xC) = IC(xA, xC) ∧ ¬∃ < xA‘, xB‘, xC‘ > ∈ U :

 IC(xA‘, xB‘, xC‘) ∧ <xA‘, xC‘> ≅ <xA, xC> ∧ CA(xB‘, xC‘) ∧ ¬CC(xA‘, xB‘)

Using the definition of the hiding operator above, this can be rewritten in the form

 CB
max (xA, xC) = IC(xA, xC) ∧ ¬ hide(as)

B (CA(xB, xC) ∧ ¬CC(xA, xB)) (3LTS)

Using a similar demonstration as for Equation (5) in Section 2, we can show that the
reduced maximal solution is given by the formula
 CB

red (xA, xC) = hide(LTS)
B (CA(xB, xC) ∧ CC(xA, xB)

 ∧ ¬ hide(LTS)
B (CA(xB, xC) ∧ ¬CC(xA, xB)) (5LTS)

This solution was presented (using a different notation) in [1], which was the first
paper on submodule construction to our knowledge. We note that this formula is the
same as (5 syn), except that a different hiding operator is used.

Like in the case of synchronous machines, these solutions may be evaluated
algorithmically when the specifications of CA and CC are given in the form of regular
languages (finite state machines).

4.3. Example

An example is shown in Figure 4. State diagrams representing the behaviour of MA
and MC are shown (solid boxes) in Figure 4(a) and (b). The state diagram for MC also
shows the Fail (F) state (a non-accepting state) and as well as the non-allowed
transitions (dotted arrows). The behaviour of (CA(xB, xC) ∧ CC(xA, xB)) is shown in
Figure 4(c); it represents the composition of the two state machines MA and MC . The
diagram is incomplete, since transitions from a composed state where MC is in the
Fail state are not shown.

Fig. 4. (a, b) State diagrams representing the behavior of MA and MC

12 Gregor v. Bochmann

Fig. 4. (c) Behavior of the composition of MA and MC; (d) the same after hiding interactions
b1 and b2 and determination

Figure 4(d) shows the state diagram obtained from Figure 4(c) after the following
two steps: (a) hiding the interactions b1 and b1 at the interface IB , and (b)
transforming the resulting non-deterministic machine into an equivalent deterministic
one. Each state of the deterministic machine represent a subset of the states of the
original non-deterministic machine, namely those that could be reached through
transitions including the hidden ones (see for instance [24] for details). Since
Equation (5LTS) only considers execution sequences that can be generated jointly by
MA and MC and that can not reach the Fail state of MA, we do not need to explore the
transitions for the resulting deterministic machine from any state that includes in its
subset a state pair for which MC is in the Fail state. We conclude that Equation (5 LTS)
results in the behaviour for MB as shown by the full arrows of Figure 4(d).

4.4. Avoidance of deadlocks

The solution equations discussed above do not consider the possibility of deadlocks
since their derivation is based on trace semantics where the meaning of the
specification of a component is the set of possible execution histories or execution
sequences. In the context of submodule construction, it is common practice to avoid
deadlocks by pruning those transitions in the obtained solution behaviour for MB that
may lead to a deadlock. There are two steps in this pruning process:
− If the obtained specification of MB (considered alone) contains a deadlock state

(such as the state {<1×2>, <1×3>} in Figure 4(d)) then all transitions leading to
this state should be pruned. This may in turn introduce other deadlock states for
which the same kind of pruning should be performed, etc. (In the example of
Figure 4(d), the transition labelled c4 should be eliminated).

− Further deadlocks may be detected when the joint behaviour of MA and MB is
evaluated (namely CC

prod as defined in Equation (4)). Again, transitions in MB that
lead to a joint deadlock state should be pruned. As under Step (1) above, this may
be a recursive process. Finally, a joint behaviour without deadlock is obtained; we
may call this the “maximal non-blocking behaviour” for MC , or CC

non-block . In

Using First-Order Logic to Reason about Submodule Construction 13

certain cases, this behaviour may contain no transition, that is, the system blocks;
this means that the given behaviour of MA is in some sense incompatible with the
required system behaviour CC .

Fig. 4. (e) behavior (containing a potential deadlock) obtained by the composition of MA and
the MB obtained in Step 1 above; (f) final specification of the behavior of MB (avoiding the
deadlock)

In this example, the joint behaviour of MA and the behaviour of MB after Step (1)
above is shown in Figure 4(e). (Note: the states si are the states shown in Figure 4d: s1
= {<1,1>, <2,2>, <3,4>}, s2 = {<1,2>}, s3 = {<1,4>}, s4 = {<1,3>, <4,2>}). It contains
a deadlock state, which may be eliminated by pruning the transition c4 in the
behaviour of MB and the subsequent state s4 = {<1×3>, <4×2>}. This leads to the
behaviour for MB shown in Figure 4(f). In this example, the whole required behaviour
CC is realized, that is, CC

 non-block = CC .

7. Conclusions

The problem of submodule construction (or sometimes called equation solving) has
some important applications for real-time control systems, communication gateway
design, testing of embedded components, and component re-use for system design in
general. Several algorithms for solving this problem have been developed based on
different formalisms that are used for defining the dynamic behavior of the desired
system and the existing submodule. In this paper, we have shown that this problem
can also be formulated in a more general setting using first-order logic. It turns out
that solutions to this problem in logic are quite simple. We show in this paper that
these solutions (and their proof of correctness) can be mapped into the different
specification formalisms considered in the earlier work. Therefore this paper
provides, in a sense, new proofs of correctness for the solutions of the submodule
construction problem described in earlier work.

The different specification formalisms considered are system components using
synchronized rendezvous interactions on several interfaces, or rendezvous with
interleaving semantics (e.g. labeled transition systems). Input/output interactions and
state machines with queued message passing are considered in a different paper [32].
It is important to note that in the case of regular behaviour specifications in the form

14 Gregor v. Bochmann

of finite state machines, the solutions to the submodule construction problem can
derived by an algorithm which is, in general, of exponential complexity.

We consider in this paper trace semantics, that is, the behaviour of the system, or
of a component, is characterized by the set of possible execution histories. This is
adequate for safety properties, but ignores issues of liveness, progress, absence of
deadlocks and fairness (with the exception of Section 4.4 where deadlock avoidance
is discussed). We believe that the issues of hard real-time properties (see for instance
[19, 27, 28]) could also addressed with the approach presented in this paper.
However, we are not sure whether it could be helpful for dealing with liveness and
progress properties (as for instance discussed in [29, 30, 28, 31]).

It is to be noted that the complexity of the algorithms for deriving the submodule
construction solution depends on the specification formalism used. As mentioned
above, it is exponential for finite state behavior descriptions, however, it is
polynomial if the interactions at the interface IB are not hidden; on the other hand, it
has been shown to be undecidable for behavior specifications in CSP [5].

References
[1] G. v. Bochmann and P. M. Merlin, On the construction of communication protocols, ICCC,

1980, pp.371-378, reprinted in "Communication Protocol Modeling", edited by C. Sunshine,
Artech House Publ., 1981; russian translation: Problems of Intern. Center for Science and
Techn. Information, Moscow, 1981, no. 2, pp. 146-155.

[2] P. Merlin and G. v. Bochmann, On the Construction of Submodule Specifications and
Communication Protocols, ACM Trans. on Programming Languages and Systems, Vol. 5,
No. 1 (Jan. 1983), pp. 1-25.

[3] E. Haghverdi and H. Ural, Submodule construction from concurrent system specifications,
Information and Software Technology, Vo. 41 (1999), pp. 499-506.

[4] C. A. R. Hoare, Communicating Sequential Processes, Prentice Hall, 1985.
[5] J. Parrow, Submodule Construction as Equation Solving in CCS, Theoretical Computer

Science, Vol. 68, 1989.
[6] A. Petrenko and N. Yevtushenko, Solving asynchronous equations, in Proc. of IFIP

FORTE/PSTV'98 Conf., Paris, Chapman-Hall, 1998.
[7] H. Qin and P. Lewis, Factorisation of finite state machines under strong and observational

equivalences, Journal of Formal Aspects of Computing, Vol. 3, pp. 284-307, 1991.
[8] J. Drissi and G. v. Bochmann, Submodule construction tool, in Proc. Int. Conf. on

Computational Intelligence for Modelling, Control and Automation, Vienne, Febr. 1999,
(M. Mohammadian, Ed.), IOS Press, pp. 319-324.

[9] G. v. Bochmann, Submodule construction for specifications with input assumptions and
output guarantees, in Proc. FORTE'02 (22st IFIP WG 6.1 International Conference on
Formal Techniques for Networked and Distributed Systems), Chapman&Hall, 2002, pp.

[10] T.Kim, T.Villa, R.Brayton, A.Sangiovanni-Vincentelli. Synthesis of FSMs: functional
optimization. Kluwer Academic Publishers, 1997.

[11] N.Yevtushenko, T.Villa, R.Brayon, A.Petrenko, A.Sangiovanni-Vincentelli, Synthesis by
language equation solving (exended abstract), in Proc.of Annual Intern.workshop on Logic
Synthesis, 2000, 11-14; complete paper in Conference on Computer-Aided Design (ICCAD
'01), 2001, pp. 103; see also Solving Equations in Logic Synthesis, Technical Report,
Tomsk State University, Томск, 1999, 27 p. (in Russian).

[12] B. Daou and G. v. Bochmann, Submodule construction for extended state machine models,
Proc. IFIP Intern. Conf. on Formal Techniques for Networked and Distributed Systems -
FORTE 2005, Taiwan, 2005, Springer LNCS 3731, 2005, pp. 396-410.

Using First-Order Logic to Reason about Submodule Construction 15

[13] G. v. Bochmann, Submodule construction and supervisory control: a generalization, in
Proc. of Int. Conf. on Implementation and Applications of Automata, Aug. 2001 (invited
paper), Springer Lecture Notes, 2002.

[14] J.Kim, and M.M.Newborn, The simplification of sequential machines with input
restrictions, IRE Trans. on Electronic Computers. December, 1972, pp. 1440-1443.

[15] S. G. H. Kelekar, Synthesis of protocols and protocol converters using the submodule
construction approach, Proc. PSTV, XIII, A. Danthine et al (Eds), 1994.

[16] Z. Tao, G. v. Bochmann and R. Dssouli, A formal method for synthesizing optimized
protocol converters and its application to mobile data networks, Mobile Networks &
Applications, vol.2, no.3, 1997, pp.259-69. Publisher: Baltzer; ACM Press, Netherlands.

[17] A. Petrenko, N. Yevtushenko, G. v. Bochmann and R. Dssouli, Testing in context:
framework and test derivation, Computer Communications Journal, Special issue on
Protocol engineering, Vol. 19, 1996, pp.1236-1249.

[18] P. J. G. Ramadge and W. M. Wonham, The control of discrete event systems, in
Proceedings of the IEEE, Vo. 77, No. 1 (Jan. 1989).

[19] B. A. Brandin and W. M. Wonham, Supervisory Control of Timed Discrete-Event
Systems, IEEE Tran. on Automatic Control, Vol.39, No.2, Feb. 1994.

[20] N. A. Lynch and M. R. Tuttle, An introduction to input/output automata, CWI Quarterly,
2(3), 1989, pp. 219-246.

[21] D. Maier, The Theory of Relational Databases, Computer Science Press, Rockville,
Maryland, 1983.

[22] S. Abiteboul, R. Hull and V. Vianu, Foundations of Databases, Addison-Wesley, 1995.
[23] M. Abadi and L. Lamport, Conjoining specifications, ACM Transactions on Programming

Languages & Systems, vol.17, no.3, May 1995, pp. 507-34.
[24] A. V. Aho, R. Sethi and J. D. Ullman, Compilers, Principles, Techniques and Tools,

Addison
Wesley, 1986.

[25] J. Misra and K. M. Chandy, Proofs of networks of processes, IEEE Tr. on SE, Vol. SE-7
(July 1991), pp. 417-426.

[26] M. Broy, Advanced component interface specification, Proc. TPPP'94, Lecture Notes in
CS 907, 1995, pp. 369-392.

[27] O. Maler, A. Pnueli and J. Sifakis, On the synthesis of discrete controllers for timed
systems, STACS 95, Annual Symp. on Theoretical Aspects of Computer Science, Berlin,
1995, Springer Verlag, pp. 229-242.

[28] J. Drissi and G. v. Bochmann, Submodule construction for systems of timed I/O automata,
submitted for publication, see also J. Drissi, PhD thesis, University of Montreal, March 2000
(in French).

[29] J. G. Thistle, On control of systems modelled as deterministic Rabin automata, Discrete
Event Dynamic Systems: Theory and Applications, Vol. 5, No. 4 (Sept. 1995), pp. 357-381.

[30] Z. P. Tao, G. v. Bochmann and R. Dssouli, A model and an algorithm of subsystem
construction, in proceedings of the Eighth International Conference on parallel and
distributed computing systems, Sept. 21-23, 1995 Orlando, Florida, USA, pp.619-622.

[31] S. Buffalov, K. El-Fakih, N. Yevtushenko and G. v. Bochmann, Progressive solutions to a
parallel automata equation, Proc. FORTE Conf. (IFIP), Sept. 2003, Berlin, LNCS 2767,
Springer Verlag, pp. 367-382.

[32] G.v. Bochmann, Submodule construction – the inverse of composition, in preparation.

